

The ULTRA-DD project: delivering new tools and resources to speed up the development of truly innovative medicines

PSWC – May 2017

Michael Sundström Scientific Director of European Initiatives, SGC and ULTRA-DD

www.thesgc.org www.ultra-dd.org

SGC & ULTRA-DD

Translational Medical Research for Early Drug Discovery

1. High Throughput Structural Biology & Protein Science (2004 -) Proteins of relevance to drug discovery. ~2000 structures deposited to date

2. Chemical Probes (2008 -) HighQ epigenetic and kinase chemical probes for disease studies

3. Research Tool Antibodies & Biological Probes (2011, 2015 -) Generation of recombinant antibodies using phage display technologies

4. Target Enabling Packages (2015 -) For disease associated & under-explored targets

5. Tissue Platforms (2015 -) Patient-Derived Cell Assays at Karolinska, Oxford, Montreal and Toronto

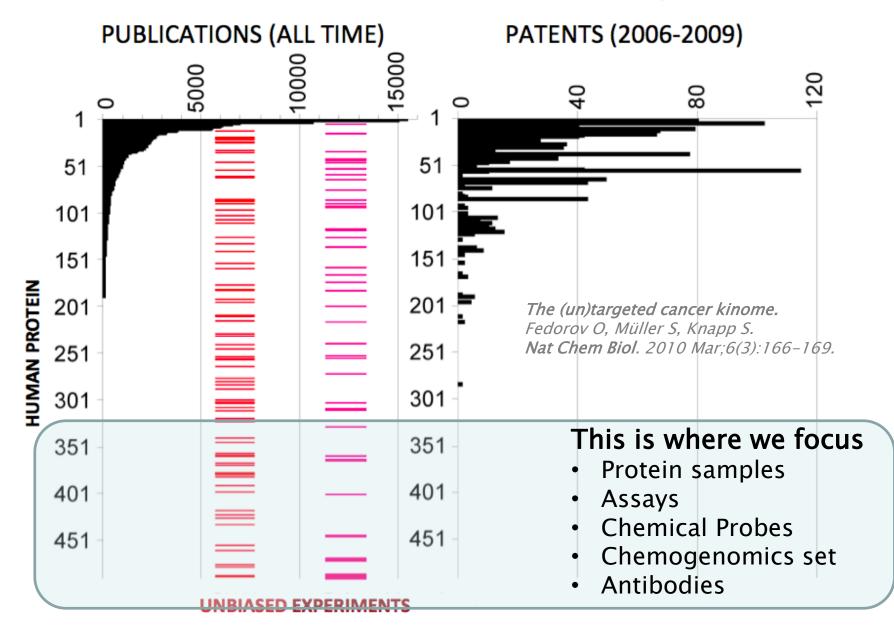
Founded 2003, 300 Staff members, strict open-source, 25 MUSD/annum

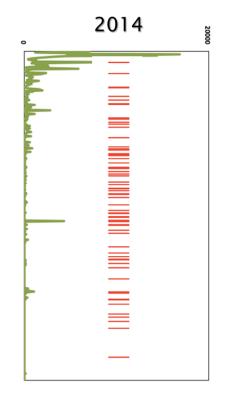
GenomeCanada

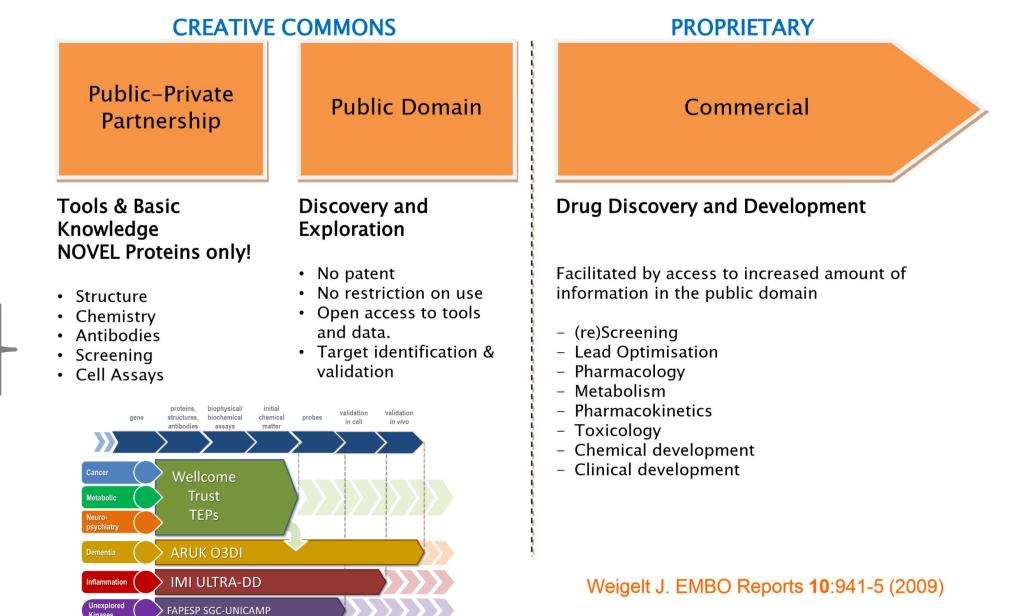
U NOVARTIS

of NORTH CAROLINA

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich







Global Research is Heavily Biased

Open Source Partnership Concept

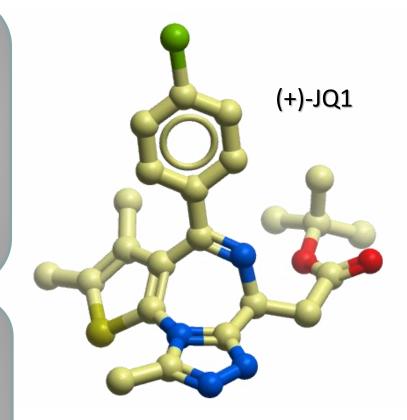
TEPs


Probes

PDCAs

HQ Chemical Tools

The Inception of Open-Source Chemistry


Open access chemical and clinical probes to support drug discovery

Aled M Edwards, Chas Bountra, David J Kerr & Timothy M Willson

Drug discovery resources in academia and industry are not used efficiently, to the detriment of industry and society. Duplication could be reduced, and productivity could be increased, by performing basic biology and clinical proofs of concept within open access industry-academia partnerships. Chemical biologists could play a central role in this effort.

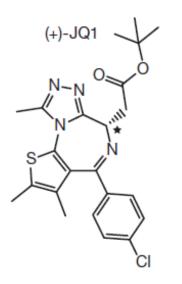
Chemical Probes Programme

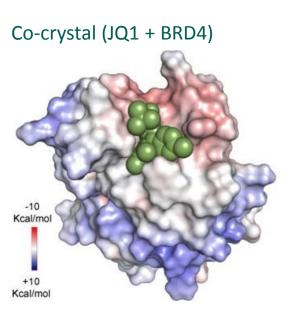
- Produced in partnership with pharma
- Publicly available & no patents
- No restriction on use
- Well characterised, not yet drugs
- Interrogate biological function
- Target & Pathway validation
- Potent: *in vitro* $IC_{50}/K_{D} < 100 nM$
- Selective: 30 fold over near family members
- Cell Permeable: activity $IC_{50} < 1 \mu M$
- Clean in wide profiling panels (*e.g.* CEREP, DiscoveRx)
- Costs around 2MUSD/probe to develop

Other target families have their specific criteria

BRD Chemical Probe

NATURE | ARTICLE


🖣 previous abstract 🛛 next abstract 🕨


Selective inhibition of BET bromodomains

Panagis Filippakopoulos, Jun Qi, Sarah Picaud, Yao Shen, William B. Smith, Oleg Fedorov, Elizabeth M. Morse, Tracey Keates, Tyler T. Hickman, Ildiko Felletar, Martin Philpott, Shonagh Munro, Michael R. McKeown, Yuchuan Wang, Amanda L. Christie, Nathan West, Michael J. Cameron, Brian Schwartz, Tom D. Heightman, Nicholas La Thangue, Christopher A. French, Olaf Wiest, Andrew L. Kung, Stefan Knapp & James E. Bradner

Affiliations | Contributions | Corresponding authors

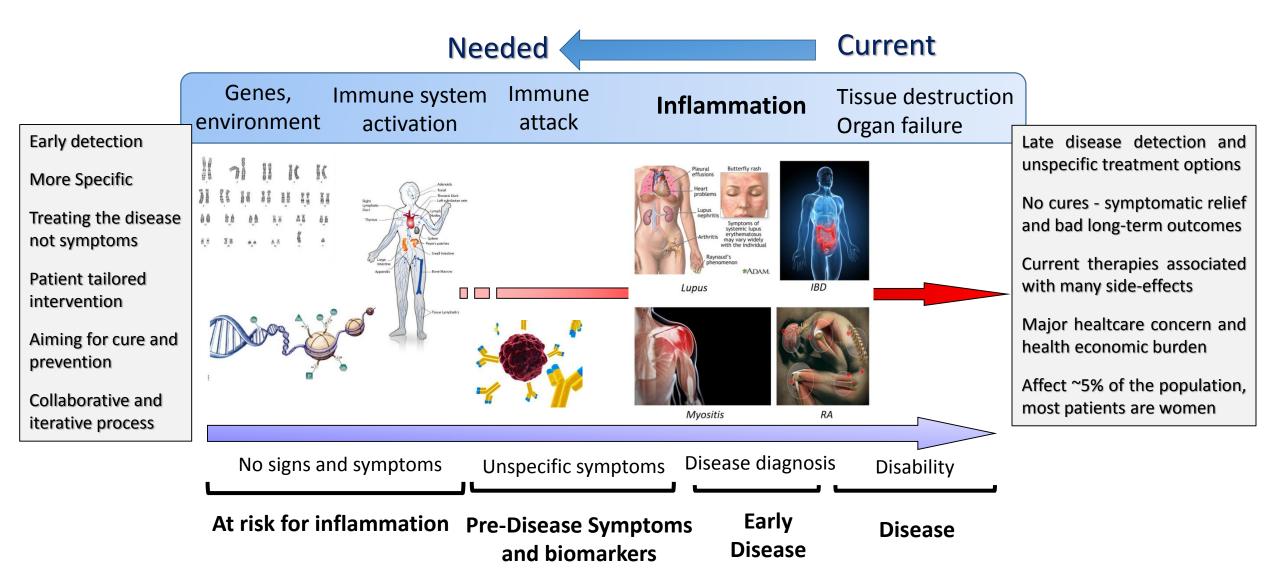
Nature 468, 1067–1073 (23 December 2010) | doi:10.1038/nature09504 Received 05 May 2010 | Accepted 17 September 2010 | Published online 24 September 2010

Disease Agnostic Exploration

- NUT midline carcinoma
- Septic Shock / Inflammation
- Myeloma
- Leukemia
- MYC regulation
- HIV infection
- Male Contraception
- Pathologic Cardiac hypertrophy

nal of science
Jobs Current Issue Archive Au
Abstract
◄ previous abstract
omodomains
nature REVIEWS CANCER
) doi:10.1038/nrc3147
u BET
u BET

Bromodomain Inhibitors in the Clinic - 2015


Company	Compound		Named Indications	Stage	Initated	Status
Abbvie	ABBV-075	1	Advanced Cancer; Breast Cancer; Non- Small Cell Lung Cancer; Acute Myeloid Leukemia; Multiple Myeloma	Phase I	2015	Ongoing
Bayer	BAY1238097	1	Neoplasms	Phase I	2015	Ongoing
Gilead	GS-5829	1	Solid Tumors; Lymphomas	Phase I	2015	Ongoing
GSK	GSK525762	1	Elapsed, Refractory Hematologic Malignancies	Phase I/II	2013	Ongoing
		2	NUT Midline Carcinoma (NMC) and Other Cancers	Phase I	2012	Ongoing
Merck (Oncoethix)	OTX015	1	Acute Myeloid Leukemia	Phase I	2014	Ongoing
		2	NUT Midline Carcinoma; Triple Negative Breast Cancer; Non-small Cell Lung Cancer With Rearranged ALK Gene/Fusion Protein or KRAS Mutation; Castrate- resistant Prostate Cancer (CRPC); Pancreatic Ductal Adenocarcinoma	Phase I	2014	Ongoing
		3	Acute Leukemia; Other Hematological Malignacies	Phase I	2012	Ongoing
		4	Glioblastoma Multiforme	Phase IIa	2014	Ongoing
Constellation	CPI-0610	1	Acute Leukemia, Myelodysplastic Syndrome, or Myelodysplastic/Myeloproliferative Neoplasms	Phase I	2013	Ongoing
		2	Previously Treated Multiple Myeloma	Phase I	2014	Ongoing
		3	Progressive Lymphoma	Phase I	2013	
Tensha	TEN-010	1	Acute Myeloid Leukemia and Myelodysplastic Syndrome	Phase I	2014	Ongoing
		2	Solid Tumors	Phase I	2013	

- 7 compounds and 14 trials mid-2015
- 2016 update: 14 compounds in 30 trials mid-2016 (+BI, BMS, FORMA, Incyte, Plexxicon, Roche, Zenith)

HQ Test Systems

Changing the Treatment Approach

COMMENT

Nature Reviews Drug Discovery, 2015

Preclinical target validation using patient-derived cells

Aled M. Edwards¹, Cheryl H. Arrowsmith¹, Chas Bountra², Mark E. Bunnage³, Marc Feldmann⁴, Julian C. Knight⁵, Dhavalkumar D. Patel⁶, Panagiotis Prinos¹, Michael D. Taylor⁷, and Michael Sundström⁸ on behalf of the SGC Open Source Target-Discovery Partnership*

The Structural Genomics Consortium (SGC) and its clinical, industry and diseasefoundation partners are launching open-source preclinical translational medicine studies.

¹Structural Genomics Consortium (SGC), University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada. ²SGC, Nuffield Department of Clinical Medicine, University of Oxford Old Road Campus Although the annual number of new drug approvals is trending upwards, the number of 'first-in-class' therapies has remained relatively constant — often fewer than 10 per year. For such new medicines for 'pioneer targets', attrition in Phase II proof-of-concept clinical studies remains the biggest hurdle¹, in large part because the target–disease associations derived from the currently dominant cell-line or animal preclinical models of dismethods were developed that enabled 90% of the total cells originating from the diseased joint to survive for 5–6 days was it possible to provide the first convincing evidence of the importance of TNF in joint inflammation, which was rapidly confirmed in animal models and then in proof-of-principle trials³.

The discovery of anti-TNF therapy also provides two other lessons. First, success derived not only from the use

Tissue Platforms - Organization

Scientific Committee

- Independent chair
- Academic KOLs

JMC

- SGC Chair
- Pharma Partners

Working Groups

- Driven by GLs
- Pharma scientists

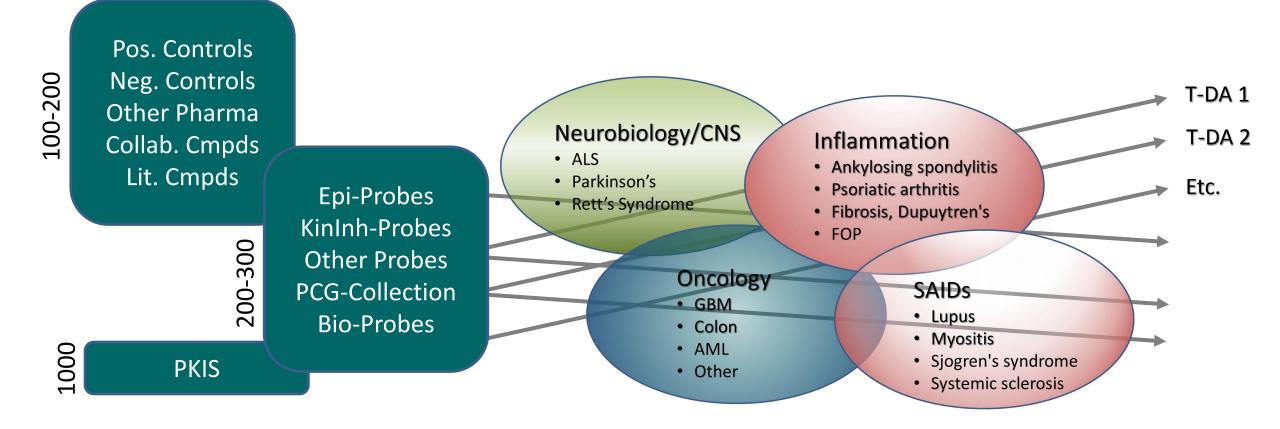
LMT

- SGC Chair
- Local key PIs & GL

Ethics Committee

• SGC Chair

Pharma TP Meeting


• Boston 2015, Basel 2016

- Group Leader
- Senior Scientist
- 1-2 TAs
- 0.5 Research Nurse

PhDs & PDFs for specific Projects

- Assay Development
- Probe screen
- Verification studies
- Initial data analysis
- Interface to clinicians
- Patient consent
- Sample collection
- Ethical approvals

HQ Probes Meet HQ Assays

Patient Cohorts

Disease	Patients/Controls seen annually	Genetic characterization	Blood	Biopsies
SLE	475/320	HLA, ImmunoChip	yes	Skin (20-30/year)
Myositis	300 (SweMyoNet) 2300 (EuMyoNet)	HLA, ImmunoChip	yes	Skin (10-20/year)
SS	40	-	yes	None
SSc	165/110	HLA, ImmunoChip	yes	Yes (20-30/year)
FOP	30	Genotypes	yes	None
AS	600	HLA, ImmunoChip	yes	Synovial fluid (30)

Fibrosis/DD accessed from external sites

Inflammatory Diseases

- Tissue Platform focused on Fibrosis, AS & FOP
- 5 staff members in place (GL, Senior Scientist, TA, PDFs)
- Laboratories established at the Botnar Research Centre
- Results to date from patients with AS and Fibrosis

NDORMS

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences

Scientific Leadership

Prof. Jagdeep Nanchahal Prof. Sir Marc Feldmann

Prof. Paul Bowness

Tak, Marisa, Lynn, Fiona, Liye

Auto-Immune Diseases

- Clinical research in SLE, myositis, systemic sclerosis, SS (and RA)
- Well characterized and managed patient cohorts
- Strong and supportive local clinical network
- Team of four staff, recruiting additional positions
- Results to date from patients with Myositis, Lupus and SSc

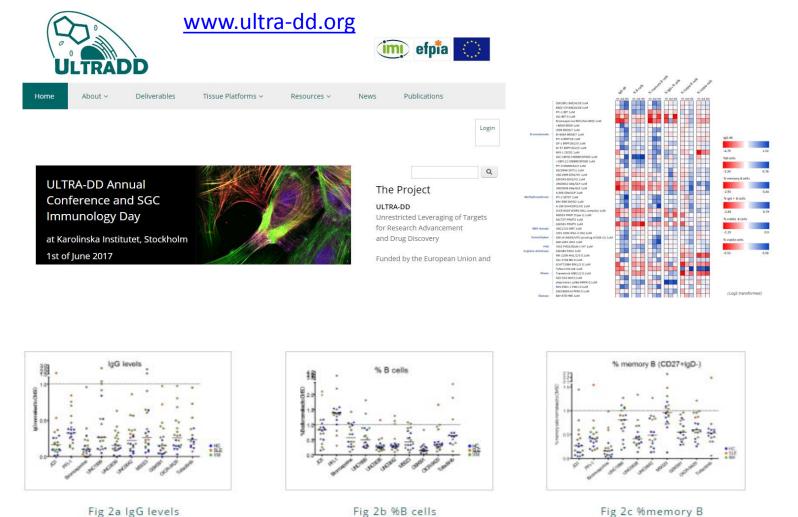
Scientific Leadership

Prof. Lars Klareskog

Prof. Per-Johan

Jakobsson

Prof. Ingrid Lundberg


Dr. Louise Berg

Open Translational Medicine Resources

down regulate the myofibroblast phenotype in Dupuytren's disease Lynn Williams¹, Thomas Layton¹, Lennart Steenbeek¹, Marisa Cabrita¹, Adam Cribbs², Huw Colin-York^{1,3}, Michael Sundstrom⁴, Marco Fritzche^{1,3}, Fiona McCann¹, Marc Feldmann¹, Jagdeep Nanchahal³ **SGC** The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK (im) ¹ The Memory institute of internationary, Numeric Department of Orthopeeucs, Internationary and Moculosy and Moculoseteral Sciences, University of Oxford, ² Computational Genomics and Training Centre (CGAT), ³ The MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK ⁴SGC Karolinska, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Solna, Sweden ۲ KENNEDY Figure 3 Inhibition of BET and CREBBP-p300 downregulates expression of INTRODUCTION fibrosis associated genes Dupuytren's disease (DD) is a localised fibrotic condition affecting the hand. Characterised by the presence of nodules myofibroblasts and inflammatory cells during the early stages of the disease High prevalence affecting approx. 4% of the populati in UK and USA, Treatment options are limited - surgical excision, disruption of cords with a needle or collagenase. But long rehabilitation and high recurrence rate (30-70% at help identify new thera argets for fibrotic disea AIMS adjusted p value Does inhibition of histone lysine acetylation via targeting of BET/CREBBP-p300 axis impact D Inhibition of BETs and CREBRP-n300 in DD myofibroblasts lead Figure 4 to G2/M cell cycle arrest Myofibroblasts are dominant cell type in DD nodule - responsible for contractures and matrix productio Figure 5 JQ1(+) treated myofibroblasts extend long branching filopodi AS a stat Figure 1 Inhibitors of BET & CREBBP-p300 reduce expression of mvofibroble Sa20'4' 10 0 g g g signature markers Col1A1 TGFB Figure 6 Traction force microscopy demonstrates that JQ1(+) attenuates DD ***** myofibroblast contractility Figure 2 BRD4 gene silencing reduces expression of myofibroblas signature genes A & C) Confocal images of treated DD myofibroblasts (green) on head coated polyachylamide bydrogel (red). B & itude generated by myofibroblast in A & C. Colou SUMMARY & CONCLUSION rs of BETs and CREBBP-p300 HATs effect

Localised inhibition of histone acetylation may offer a novel therapeutic strategy to

Thanks to all contributors !

Contact:

Michael Sundström Scientific Director of European Initiatives michael.sundstrom@thesgc.org/@ki.se www.thesgc.org www.ultra-dd.org

FUNDING PARTNERS

The SGC is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada, Innovative Medicines Initiative (EU/EFPIA), Janssen, Merck & Co, Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, and Wellcome Trust